
NAG C Library Function Document

nag_zgebrd (f08ksc)

1 Purpose

nag_zgebrd (f08ksc) reduces a complex m by n matrix to bidiagonal form.

2 Specification

void nag_zgebrd (Nag_OrderType order, Integer m, Integer n, Complex a[],
Integer pda, double d[], double e[], Complex tauq[], Complex taup[],
NagError *fail)

3 Description

nag_zgebrd (f08ksc) reduces a complex m by n matrix A to real bidiagonal form B by a unitary

transformation: A ¼ QBPH , where Q and PH are unitary matrices of order m and n respectively.

If m � n, the reduction is given by:

A ¼ Q
B1

0

��
PH ¼ Q1B1P

H;

where B1 is a real n by n upper bidiagonal matrix and Q1 consists of the first n columns of Q.

If m < n, the reduction is given by

A ¼ Q B1 0 Þð PH ¼ QB1P
H
1 ;

where B1 is a real m by m lower bidiagonal matrix and PH
1 consists of the first m rows of PH .

The unitary matrices Q and P are not formed explicitly but are represented as products of elementary
reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with Q and P in
this representation (see Section 8).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ksc

[NP3645/7] f08ksc.1

3: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: n � 0.

4: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ when
order ¼ Nag ColMajor and at least maxð1; pda�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the m by n matrix A.

On exit: if m � n, the diagonal and first super-diagonal are overwritten by the upper bidiagonal
matrix B, elements below the diagonal are overwritten by details of the unitary matrix Q and
elements above the first super-diagonal are overwritten by details of the unitary matrix P .

If m < n, the diagonal and first sub-diagonal are overwritten by the lower bidiagonal matrix B,
elements below the first sub-diagonal are overwritten by details of the unitary matrix Q and
elements above the diagonal are overwritten by details of the unitary matrix P .

5: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:

if order ¼ Nag ColMajor, pda � maxð1;mÞ;
if order ¼ Nag RowMajor, pda � maxð1;nÞ.

6: d½dim� – double Output

Note: the dimension, dim, of the array d must be at least maxð1;minðm;nÞÞ.
On exit: the diagonal elements of the bidiagonal matrix B.

7: e½dim� – double Output

Note: the dimension, dim, of the array e must be at least maxð1;minðm;nÞ � 1Þ.
On exit: the off-diagonal elements of the bidiagonal matrix B.

8: tauq½dim� – Complex Output

Note: the dimension, dim, of the array tauq must be at least maxð1;minðm; nÞÞ.
On exit: further details of the unitary matrix Q.

9: taup½dim� – Complex Output

Note: the dimension, dim, of the array taup must be at least maxð1;minðm; nÞÞ.
On exit: further details of the unitary matrix P .

10: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

f08ksc NAG C Library Manual

f08ksc.2 [NP3645/7]

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, m ¼ hvaluei.
Constraint: pda � maxð1;mÞ.
On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed bidiagonal form B satisfies QBPH ¼ Aþ E, where

kEk2 � cðnÞ�kAk2;

cðnÞ is a modestly increasing function of n, and � is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.

8 Further Comments

The total number of real floating-point operations is approximately 16n2ð3m� nÞ=3 if m � n or

16m2ð3n�mÞ=3 if m < n.

If m � n, it can be more efficient to first call nag_zgeqrf (f08asc) to perform a QR factorization of A, and
then to call nag_zgebrd (f08ksc) to reduce the factor R to bidiagonal form. This requires approximately

8n2ðmþ nÞ floating-point operations.

If m � n, it can be more efficient to first call nag_zgelqf (f08avc) to perform an LQ factorization of A,
and then to call nag_zgebrd (f08ksc) to reduce the factor L to bidiagonal form. This requires

approximately 8m2ðmþ nÞ operations.

To form the unitary matrices PH and/or Q, this function may be followed by calls to nag_zungbr (f08ktc):

to form the m by m unitary matrix Q

nag_zungbr (order,Nag_FormQ,m,m,n,&a,pda,tauq,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_zgebrd (f08ksc);

to form the n by n unitary matrix PH

nag_zungbr (order,Nag_FormP,n,n,m,&a,pda,taup,&fail)

but note that the first dimension of the array a, specified by the parameter pda, must be at least n, which
may be larger than was required by nag_zgebrd (f08ksc).

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ksc

[NP3645/7] f08ksc.3

To apply Q or P to a complex rectangular matrix C, this function may be followed by a call to
nag_zunmbr (f08kuc).

The real analogue of this function is nag_zgebrd (f08ksc).

9 Example

To reduce the matrix A to bidiagonal form, where

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i

�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

1
CCCCCCA

0
BBBBBB@

:

9.1 Program Text

/* nag_zgebrd (f08ksc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)
{

/* Scalars */
Integer i, j, m, n, pda, d_len, e_len, tauq_len, taup_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *taup=0, *tauq=0;
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08ksc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%*[^\n] ", &m, &n);

#ifdef NAG_COLUMN_MAJOR
pda = m;

#else
pda = n;

#endif
d_len = MIN(m,n);
e_len = MIN(m,n)-1;
tauq_len = MIN(m,n);
taup_len = MIN(m,n);

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) ||

!(d = NAG_ALLOC(d_len, double)) ||

f08ksc NAG C Library Manual

f08ksc.4 [NP3645/7]

!(e = NAG_ALLOC(e_len, double)) ||
!(taup = NAG_ALLOC(taup_len, Complex)) ||
!(tauq = NAG_ALLOC(tauq_len, Complex)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");

/* Reduce A to bidiagonal form */
f08ksc(order, m, n, a, pda, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ksc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print bidiagonal form */
Vprintf("\nDiagonal\n");
for (i = 1; i <= MIN(m,n); ++i)

Vprintf("%9.4f%s", d[i-1], i%8==0 ?"\n":" ");
if (m >= n)

Vprintf("\nSuper-diagonal\n");
else

Vprintf("\nSub-diagonal\n");
for (i = 1; i <= MIN(m,n) - 1; ++i)

Vprintf("%9.4f%s", e[i-1], i%8==0 ?"\n":" ");
Vprintf("\n");

END:
if (a) NAG_FREE(a);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (taup) NAG_FREE(taup);
if (tauq) NAG_FREE(tauq);

return exit_status;
}

9.2 Program Data

f08ksc Example Program Data
6 4 :Values of M and N

(0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
(0.62,-0.46) (1.01, 0.02) (0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) (0.19,-0.54) (-0.98,-0.36) (0.22,-0.20)
(0.83, 0.51) (0.20, 0.01) (-0.17,-0.46) (1.47, 1.59)
(1.08,-0.28) (0.20,-0.12) (-0.07, 1.23) (0.26, 0.26) :End of matrix A

9.3 Program Results

f08ksc Example Program Results

Diagonal
-3.0870 2.0660 1.8731 2.0022

Super-diagonal
2.1126 1.2628 -1.6126

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ksc

[NP3645/7] f08ksc.5 (last)

	f08ksc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	a
	pda
	d
	e
	tauq
	taup
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

